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Abstract. Dyson’s two-dimensional Coulomb gas on the unit circle with inverse temperature
B is investigated with the help of a Metropolis algorithm. Theoretical predictions for
energy and specific heat are verified. The connection with the theory of ensembles of
random unitary matrices with orthogonal, unitary or symplectic symmetry corresponding
to f =1, 2, 4 is investigated in detail. New approximation formulae for the spacing
distribution and the so-called delta statistics are proposed and found to be useful, not
only in the three cases mentioned but also for all 8 between 0 and 4. Our approach does
not give a fitting parameter like the Brody distribution but an approximation to the true
B. Moreover, it is especially useful in cases when the application of the Berry—Robnik
distribution is baseless, namely for quantum systems with a completely chaotic classical
limit that show intermediate eigenvalue statistics because of Anderson localisation.

1. Introduction

Currently an overwhelmingly large number of examples exist which prove the usefulness
3 of random matrix theory (RMT) applied to quantum systems which are chaotic in
the classical limit (Eckhardt 1988). RMT establishes the existence of three spectral
universality classes connected with the three groups O(N), U(N) and, for even N,
Sp(N), which leave ensembles of unitary or Hermitian N x N matrices invariant.
The three ensembles of unitary matrices, which are already uniquely defined by this
invariance property, were introduced by Dyson (1962a), who called them circular
ensembles. They are commonly abbreviated COE, CUE and CSE. The corresponding
ensembles of Hermitian N x N matrices need an additional specification to be unique
(namely independent Gaussian distributions of the matrix elements) and are usually
abbreviated GOE, GUE and GSE. The most prominent difference between these ensembles
is the degree f of eigenvalue repulsion, which depends only on the underlying symmetry
group and is linear (f = 1) for COE and GOE, quadratic (f = 2) for CUE and GUE, and
finally quartic (8 = 4) for CSE and GSE.

While the Gaussian ensembles turned out to be appropriate for describing the
spectral properties of ‘typical’ Hamiltonians with discrete spectra, which do not possess
enough ‘good’ quantum numbers to diagonalise them in a physically simple basis,
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the same holds true for circular ensembles and ‘typical’ unitary propagators of non-
autonomous quantum dynamics. A fourth possibility of spectral behaviour, Poissonian
distribution of eigenvalues, showing no repulsion (§ = 0), seemed to be connected
with quantum systems with an integrable classical limit and more than one degree of
freedom (Berry and Tabor 1977).

As the universal features of quantum systems concerning their eigenvalues (spacing
distribution, spectral stiffness, fluctuation in the spectral staircase) and distribution of
eigenvector components, and their relations to the symmetries of the quantum systems
in question are now well understood, the ‘non-universal’ properties are beginning to
receive attention. Such properties include, for example, the saturation of the stiffness
and fluctuations of the spectral staircase and other peculiarities of quantum spectra
depending on the short periodic orbits of the corresponding classical system, which are
of course non-universal (Berry 1985).

In this paper we turn instead to another class of experimental results that are in
contrast to the mentioned picture of three universality classes, namely intermediate
eigenvalue statistics, which can be described by a repulsion parameter f ranging
between 0 and 4. Two groups of quantum systems show that there is need for
intermediate values of . For quantum systems that are not completely chaotic in
the classical limit one typically finds spacing distributions and so-called A statistics,
measuring the spectral stiffness, that lie between two extremes, the Poissonian case
(8 = 0) and the maximal quantum chaos (Izrailev 1986) which is attained in the case
of the completely chaotic classical limit with § = 1, 2 or 4. On the other hand, a
completely chaotic classical limit does not guarantee this limiting quantum behaviour,
as is known from the kicked rotator. Localisation of the perturbed eigenfunctions
in the unperturbed representation is the reason for suppression of maximal quantum
chaos accompanied by intermediate § (Izrailev 1984, 1986, Feingold and Fishman 1987,
Frahm and Mikeska 1988, Izrailev 1988).

Two main ways are known to describe intermediate spacing distributions: the
Brody distribution (Brody et al 1981) and the Berry—Robnik distribution (Berry and
Robnik 1984). The former is nothing but an interpolation formula to fit numerical
results and only a limited amount of information can be drawn from the value of the
fit parameter. Moreover, the Brody distribution is not appropriate to fit spectra which
are intermediate in their properties between the orthogonal (§ = 1) and the symplectic
(B = 4) case. The Berry—Robnik distribution, on the other hand, was deduced under
the assumption of co-existing regular and chaotic regions in classical phase space. This
is not the case for the strongly kicked rotator which nevertheless can show intermediate
eigenvalue statistics.

We propose to go back to Dyson’s original idea of using a connection between
the eigenvalue distribution for the three circular ensembles with f = 1, 2, 4 and the
partition function of a two-dimensional Coulomb gas on the unit circle with inverse
temperature . Dyson (1962b) used this connection to find the asymptotic behaviour
of the spacing distributions for large spacings between neighbouring particles in the
three cases mentioned. But now we have an application for the intermediate cases with
0 < B < 2, namely the localised kicked rotator with broken time-reversal symmetry
(Izrailev 1986, 1987, 1988). For a generalisation to spin-dependent kicking potentials
(Scharf 1989) one finds 0 < 8 < 4.

First we collect some results of random matrix theory (RMT) concerning eigenvalues.
Then we briefly review Dyson’s work on the Coulomb gas on the circle and verify some
theoretical results with the help of a Monte Carlo simulation. We state conjectures on
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Dyson’s Coulomb gas on a circle 965

intermediate spacing distributions and A statistics and investigate them numerically in
detail for § = 1, 2, 4 and over the whole range between 0 and 4. We use the conjectures
to propose a new method to find the degree of level repulsion for experimental spectra,
and discuss its usefulness for the investigation of quantum systems with (partially)
localised eigenstates and a strongly chaotic classical limit.

2. Spectral properties of unitary random matrices

In this section we collect some results of RMT concerning eigenphases of unitary N x N
matrices drawn from the ensembles COE or CUE or of 2N x 2N matrices drawn from the
symplectic ensemble CSE. The eigenphases will be denoted by 6, with k = 1,2,... N.
In the symplectic case eigenvalues are twofold degenerate, so it suffices to give N
eigenphases in this case, too.

The joint distribution of eigenphases for the circular ensembles COE, CUE and CSE
(B =1,2,4, respectively) is exactly given by (Mehta 1967)

B

Ons@p--.00) = 255 [] leio, _ el 2.1)
I<j<k<N
with the normalisation constant Z, ,
2n ) B
Zyg=Qm7N e —e%| do, ... dby (2.2)
0 l<j<k<N

given by Dyson (1962a)

Zyg =T( +BN/2) [T+ /D)) . 2.3)

The eigenphases 6; possess a mean next-nearest-neighbour (NNN) spacing of 2n/N,
but the distribution of normalised NNN spacings S, called P(S), is known in closed
form only for a few special cases. For N — oo expansions in powers of S are possible
(Mehta 1967, Dietz 1989); for example, up to order S (Dietz and Haake 1990):

P\(S) = in?S — &n*S? + £ St + n®S® —0.20355° — 0.1046S’
Py(S) = in?S? — Zn*S* + ;en®S6 —0.234757 (2.4)
P(S) = 11.54488* — 26.0440S°.

For N — oo Dyson (1962b) deduced the asymptotic behaviour of Py(S) for large S
Py(S) ~ AS* /D12 expl L n2pS2 — Ln(1 - B/2)S). (2.5)

To have an approximation for P(S) in a simple form it has become customary to
use the Wigner surmise

Py(S) ~ C;S" exp(—4,5?) (2.6)
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with the constants 4; and Cg to be determined by normalisation and setting the mean
of S to 1: (1) = (§) = 1. For the physically interesting cases one finds

P,(S) ~ %S exp (—%52)

32 4
P,y(S) ~ pSzexp (—;52) 2.7

64\’ 64
P,(S) ~ (%) S*exp (—57;52) )

Comparing the approximation (2.7) with the expansions (2.4) shows that even the
slopes at S = 0 come out wrong. Nevertheless, the total error one makes by using (2.7)
is less than 5%, which is enough for most practical purposes because it can be detected
only with a sample containing more than about 10000 spacings.

Another spectral property in respect of which the three ensembles behave differently
is the so-called number variance which measures the fluctuations in the number n(L)
of eigenvalues that a strip of length L contains:

THO = (D) - L) (n(L) = L. (28)
Pandey (1979) gives, up to O(1/L),

2 2
= = 5 <ln(2nL) Fy+1— %)

L) = %[In(ZnL) +7y+1] (2.9)

1 2
B = 55 (ln(4nL) Fy+1+ %)

with y denoting Euler’s constant: y = 0.57721566... .
Finally we give expressions for the so-called A statistics (or sometimes A, statistics,
for historical reasons) which measures the stiffness of the spectral staircase

1 Bo+2rL/N ,
Ap(D) = 7 max f [N(6) — 46 — B]*d6 (2.10)
8o

which should be minimised by changing 4 and B. It can be shown (Pandey 1979) that
there exists a connection between Ag(L) and Zf,(L) up to O(1/L)

1 9
Ay(L) = Ezg(m - (2.11)

and from this up to O(1/L)

1 5
A(L) = = (ln(ZnL) +7— i Z)

1 5
ML) =55 (ln(ZnL) +y— Z) 2.12)

2
Ay(L) = 4i (ln(4nL) = §).
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For reasons of completeness, we note the corresponding expressions for the Pois-
sonian spectrum, formally setting f = 0:

Py(S) =75 (L) =L Ao(L) = L/15. (2.13)

All these results have been verified for spectra of autonomous (Haller et al 1984,
Seligman et al 1984, Berry and Robnik 1986) as well as kicked quantum dynamics
(Izrailev 1986, Frahm and Mikeska 1986, Nakamura et al 1986, Haake et al 1987, Ku$
et al 1987) with a strongly chaotical classical limit for all cases § = 1, 2 and 4, although
in the latter case up to now only for kicked dynamics (Scharf et al 1988, Scharf 1989).

Some of the previous formulae contain § explicitly and the question arises as to
whether they are valid not only for § = 1, 2 and 4 but also for intermediate . This
is the case for the normalisation constant Zy, (2.3). That the formula (2.5), which
describes the behaviour of Py(S) for § » 1, also makes sense for intermediate  was
shown by Dyson with the help of a thermodynamical model, which is introduced in
the next section.

3. Dyson’s Coulomb gas on the unit circle

Dyson (1962b) introduced the model of a gas of N equally charged particles moving on
the unit circle and interacting via a Coulomb force in two dimensions. His aim was to
investigate the properties of the phase distribution Qy4(6,,...,0y) mentioned in section
2. The connection between the Coulomb gas and the distribution of eigenphases of
the circular ensembles becomes obvious when looking at the partition function of the
Coulomb gas

2n
Zy(B) = 2m)™N f e?" do,...doy, (3.1
0
with the potential energy W

W=— Z In el — i, (3.2)
I<j<k<N

The trivial momentum-dependent part of the partition function has been discarded.
For B =1, 2 and 4, Zy'(B) is the normalisation constant of the joint distribution of
eigenphases Qy;(0,,...,0y) of the circular ensembles. But for the Coulomb gas f is
allowed to take on any positive value. The minimum potential energy that the gas
acquires in the zero-temperature limit (ie. § — oo) can be shown to be W, = —%N InN.
To have a finite expression for the potential energy in the thermodynamic limit (N — o),
one defines a new energy scale and a new partition function

2n
o\ (B) = 2m)™N fo exp [—B(W — Wy)] db, ...doy. (3.3)

Using (2.3) for Z,(p) one finds for the free energy per particle in the thermodynamic
limit (Dyson 1962b, Mehta 1967)

L(B/2) N 1 —1In(8/2) (3.4)

b= =7 5
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with the abbreviation L(z) = InI'(1 + z). From this one calculates for the potential
energy and specific heat per particle

U(B) = 3IL'(B/2) —n(B/2)] C(B)=—3BL"(B/2) + B/2. (3.5)

These last two formulae we need later for comparison with Monte Carlo simulations.
Dyson’s main interest in investigating the Coulomb gas was to find an expression for
the spacing distribution Py ,(S) for N — oo. He only partially succeeded in finding the
asymptotic behaviour for § » 1 (or more precisely S » 1) which we have already
given in (2.5).

Before closing this section, two general statements should be made. Allowing for
further interaction terms between the particles on the circle, for example (Yukawa 1986)

1
W, = -5 z In{e, + sinz[(Oj —0,)/2]}, (3.6)

1<j<k<N

might change their distribution function, although a large class of interaction terms does
not have any influence in the thermodynamic limit (Kamien et al 1988). It was already
recognised by Dyson that the same Coulomb gas constrained to move on an infinite
straight line with an additional confining harmonic potential has a partition function
of the same form as the normalisation integral of the joint eigenvalue distribution
function of the Gaussian ensembles.

In this paper we do not investigate the distribution of eigenvector components
for the circular ensembles because the mapping to the Coulomb gas only involves the
eigenvalues. But a generalisation of the results for the universal cases f = 1, 2 and 4
(Izrailev 1987, Kus et al 1988) to the intermediate values is of great interest.

4. Intermediate spacing distribution and A statistics

Since, for § =0, 1, 2 and 4, the spacing distribution P;(S) for a quantum dynamics
with a chaotic classical limit behaves like S# for S < 1, it is tempting to assume
that this holds true for quantum systems showing intermediate spacing distribution
with conveniently chosen positive . But the non-analytic behaviour of S# in § =0
contradicts the results from almost degenerate perturbation theory, namely that the
degree B of level repulsion depends only on the symmetries of the quantum dynamics
in the subspace spanned by the near degenerate eigenfunctions which leads to § =1, 2,
and 4 or to f§ = 0 in the case of a perturbation with vanishing coupling between
the eigenfunctions (Scharf et al 1988). Therefore P4(S) ~ S# with a non-universal
can be true at best on an intermediate scale 0 < §; < § < 1. On a finer scale the
universal behaviour with f = 0, 1, 2 or 4 will finally dominate. In experiments only
the intermediate scale is resolvable and therefore P;(S) ~ 5# might be worth testing.

One of us has recently proposed (Izrailev 1988) using Dyson’s asymptotic result
(2.5) for large S in slightly modified form together with the behaviour discussed for
small S to obtain the following approximation for Py(S) for the whole range of spacings
0<S <o

B 2
Py(S) = A(?) exp [—ﬁ%sz - (B - IZ—”) s] (4.1)
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Figure 1. Dependence of the constants A (full curve) and B (broken curve) in spacing
distribution (4.1) upon f.

with the f-dependent constants 4 and B to be determined from normalisation and
from (S) = 1. Figure 1 shows their dependence on 8 for the range of largest physical
interest. The values of 4 and B for # = 1,2 and 4 are: 4, = 1.198..., B, = 1.183..,,
A, =1369..., B, = 1.658..., A, = 1.551..,, B, = 2.711.... Several examples for the
form of the distribution itself will be given in section 7.

Compared with the Brody distribution, the conjectured distribution (4.1} has the
advantage that it shows the correct asymptotic behaviour in S — oo for f > 1 and that
B is not just a fitting parameter but has physical meaning, as will be shown in section
7. In contrast to the Berry—Robnik distribution, it provides the possibility of having an
intermediate spacing distribution without relying on classical phase space structures.
This is important because, for example, the strongly kicked rotator, although it does not
possess any non-chaotic structures of mentionable weight in the classical phase space,
nevertheless shows intermediate statistics (0 < f < 1 with time-reversal invariance
or 0 < B < 2 without) which is in contrast to the prediction of the Berry—Robnik
distribution. The explanation is that the eigenfunctions show Anderson localisation, an
effect that is not accounted for in Berry—Robnik distribution. In addition to that the
latter does not, in general, vanish at § = 0, which causes strong deviations for small S
between experimental histograms and the Berry—Robnik distribution. This can only be
remedied by additional ad hoc requirements (Robnik 1987).

Turning now to the formulae (2.9) and (2.12) for ij(L) and Agz(L), the number
variance and the A statistics, the following conjectures for 0 < § < 4 are tempting (up
to O(1/L)):

2
L) = Wln(L)wLZf,(l)
1

pr?

4.2)
A(L) = In(L) + Aj(1).

For B — 0 these approximate formulae do not give the correct linear Poissonian
behaviour. Therefore one expects that they fail when f is too small.
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5. Monte Carlo simulation of Dyson’s Coulomb gas on the circle

To check the stated conjectures concerning the spacing distribution, the number vari-
ance and the A statistics, we made a Monte Carlo simulation of Dyson’s Coulomb
gas on the unit circle with N = 99 particles and inverse temperature . We describe
the Metropolis algorithm used (see, for example, Binder and Heermann 1988) only
briefly. We started with different initial distributions of the particles on the circle
(equally spaced, Poissonian-distributed spacings, positions calculated from eigenvalues
of a random unitary matrix) to check the independence of our results from the initial
distribution. The evolution of the dynamics was made in discrete time steps, each step
containing the following substeps.

(i) Calculate the energy W = W(0,,...,0,) given by (3.2) for the set of particle
positions (0,,...,0y).

(i) Draw N random numbers (r,...,ry), equally distributed in the interval [—r,7]
with r = 21 /N (Noise) (we present results for Noise = 0.1 and 0.2).

(iii) Compute positions 6, = 0, +r, (k = 1,...,N). Because of the logarithmic
singularities in W', the particle positions cannot change their order. Therefore, only
sets of positions (6,...,0y) that respect the original order are allowed.

(iv) The energy W’ = W(0,...,0),) is calculated. If W’ < W, the particle positions
take on the new values (6},...,0,). But if W’ > W, then the Boltzmann factor
g = ") < 1 will be compared with another random number p, now equally
distributed in [0,1]. If ¢ > p the particle positions will take on the new values
01,...,8y), too. Otherwise the system remains unchanged.

After waiting an appropriately chosen number of time steps for the system to relax
into equilibrium, the sets of positions, generated in the course of time, can be used to
calculate quantities of physical interest. The sampling of the positions should be done
at times far enough apart for correlations to decay sufficiently.

First we investigated the 8 dependence of the potential energy U (8) and the specific
heat per particle C(f) and compared them with the theoretical predictions (3.5) to test
the reliability of our simulation procedure. The results in figure 2 show that the
experimental energies follow the theoretical prediction closely. Only for small g is there
a systematic deviation which can be explained by the finite-size effects and prohibitively
long relaxation times. As the specific heat C(f) is a measure of the fluctuation of the
energy U(fB) per particle in an infinite system, we expect for our small system only
qualitative agreement between theory and experiment. With this restriction in mind
the results shown in figure 2 are quite satisfactory. The behaviour of the specific heat
and the potential energy upon changing f shows that our Monte Carlo simulations
give reliable results. A clearcut dependence of these results on the degree cf noise we
used is not visible.

After comparing the numerical results with quantities known analytically, we now
proceed to quantities whose dependence on the inverse temperature f is not known in
closed form.

6. Results for g = 1, 2 and 4

We want to compare the results of our Monte Carlo simulation for N = 99 particles
(or eigenphases) at an inverse temperature § = 1, 2 and 4 with the properties of
the three corresponding universality classes from RMT, We focus our attention on the
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0.5 T T T T T T

Potential energy per particle
Speaific heat per particle

Figure 2. (a) Dependence of the mean potential energy per particle U(f) for a system
of N = 99 particles with inverse temperature f for Noise = 0.1 (open triangles) and
Noise = 0.2 (open squares) compared with the theoretical prediction (3.5) (full curve). (b)
The same for the mean specific heat per particle C(f).

spacing distribution, the A statistics and the number variance and use the approximate
formulae (2.7), (2.12) and (2.9), respectively. As a measure of the differences between
the experimental histograms for the spacing distribution and the theoretical prediction
we calculate the y? values, giving the sum of the relative variances between theory
and experiment over all bins of the experimental histogram containing ten and more
spacings. The remaining sparse bins we accumulated. As we sample the particle spacings
for 100 uncorrelated configurations, the total number of spacings is 9900. With this
statistics we do not yet expect to see differences between Wigner’s surmise (2.7) and the
exact spacing distribution. We also used the conjectured distribution for P,,(S) (4.1) and
searched for the B = .., that minimises the y* values for the experimental histograms.
Figure 3 shows the experimental histograms for P(S) in all three cases. It is compared
with the Wigner surmise (2.7) and our conjecture (4.1). The deviation from experiment
comes out slightly smaller for the latter one, but both theoretical predictions follow
the experiment quite closely. Taking f§ in the asymptotically correct distribution (4.1)
as a fitting parameter, calling it f,;,, and comparing it with the inverse temperature f
of the Coulomb gas, we see a good correspondence for f = 2 but slight deviations for
B =1 and 4. This feature will be seen more clearly in the next section.

Turning now to the A statistics, we compare the experimental results sampled over
100 sets of particle positions with the theoretical prediction (2.12). We find good
agreement for § = 1, but excellent agreement for f# = 2 and 4 even down to L ~ 5
although the theoretical predictions do not take into account terms of O(1/L) (see
figure 4). This is in complete aggreement with the results for the time-reversal-invariant
kicked top (8 = 1, 4) with chaotic classical limit (Scharf et al 1988).

Finally we turn to the number variance Zf,(L). The fluctuations of the experimental
values around the theoretical values (2.9) were larger than the fluctuations for the A
statistics. Nevertheless, the three cases were clearly distinguishable from each other
and results were not in contradiction with theoretical predictions.
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Figure 3. Comparison between experimental his-
tograms for the spacing distribution P(S) (9900 spac-
ings, Noise = 0.2) and the Wigner surmise (2.7) (bro-
ken curve) and the conjectured Pg(S) (4.1) (minimum
x? fit: full curve) for: (a) B =1, X%g = 34.80 (Wigner)
and 73, = 22.27 (our conjecture with Bhigo = 1.18);
) p=2 154 = 19.87 (Wigner) and 154 = 19.25
(our conjecture with Phise = 2.01); (¢) 8 = 4,
X%x = 22.31 (Wigner) and X%l = 20.03 (our conjecture
with fhiso = 3.71).

Figure 4. Comparison between experimental A statis-
tics (9900 values, Noise = 0.2) and the theoretical
prediction (2.12) for 8 = 1 (open triangles and dot-
ted curve), f = 2 (asterisks and full curve) and § = 4
(open squares and broken curve).
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7. Results for intermediate f

We come to the main part of our investigation, namely the behaviour of the interesting
statistical properties of the Coulomb gas with inverse temperature f in the whole
interval (0,4]. The results for the potential energy U{(f) and the specific heat C(f) in
section 5 have shown that the Monte Carlo simulation is reliable for the whole interval
with the possible exception of f < 0.2

First we compare histograms of experimental spacing distribution for intermediate
inverse temperature f§ of the Coulomb gas with the conjectured spacing distribution
(4.1). By minimising the x> value we determine an experimental § value called ;..
In addition, we find error bars for mao by fitting for y* values that correspond
to 1% confidence (Abramowitz and Stegun 1965). We now have the possibility of
comparing f;,, With the true f, which is, of course, not known for intermediate
spacing distributions stemming from quantum spectra. In figure 5 we present a few
examples of histograms together with their minimum y? fitting distribution and the
1% confidence fittings. These examples illustrate the fact that it is possible to fit
experimental spacing distributions over the whole range of physically interesting f
values with sufficiently small deviations when using the proposed distribution (4.1).
Only for 0 < f < 0.2 does the conjectured distribution not seem to work well, but even
here its deviations from the experimental histograms are not worse than those for the
Brody distribution.

Figure 6 collects these results. It shows the dependence of f;,, upon the inverse
temperature f = fy.m Over the range 0 < f < 4 As a good approximation,
Bristo = Biherm holds and can be used for practical purposes if the exact f = f.m
is unknown, as is usually the case. Two deviations from this simple relation can be
noticed upon closer inspection. One is a slight underestimation of the true # when using
Bristo for large values of f. The other is a slight deviation for small values of f which
amounts to an overestimation of the true § by using f,,,,- Nevertheless figure 6 does
show that the proposed spacing distribution (4.1) can be used over the whole range of
physically relevant f values to get an approximation ;.. that describes the physics
underlying the spacing distribution. For example, it can be used to find the scaling
behaviour of the spacing distribution of systems with finite-dimensional Hilbert space
that show a localisation—delocalisation transition for the eigenfunctions, and compare
it with the scaling behaviour of the eigenfunctions themselves (Casati et al 1990).

Finally we check our conjecture (4.2) concerning the § dependence of the A statis-
tics, which simply states

Ag(L) ~ %ln(L) + constant. (7.1)

Therefore a value for f called f,, can be determined by a least-squares fit of
the experimental A statistics, which we restricted to the interval 5 < L < 31. The
dependence of B4, on f = B, is shown in figure 7. The error bars are, in this case,
not as easy to find as in the case of fi,,,, but they are quite large (+0.2). Once again
we have as a good approximation fy. ., = Puerm- But the systematic deviations from
this simple behaviour are the same as in the previous case: overestimation of the true
B for small values and underestimation for large values of §.

Figure 8 shows the dependence of the constant term in (7.1) or (4.2), called Ag(1)
for short, on f and compares it with the three theoretical constants given in (2.12).
For small § this constant becomes more and more questionable, since the assumption
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Figure 7. Dependence of fyeia gained from a least-
square fit of experimental A statistics using con-
jecture (4.2) on B = fiherm for Noise = 0.1 (open
triangles) and Noise = 0.2 (open squares).

Figure 8. Dependence of Ag (L = 1) gained from
a least-square fit of experimental A statistics using
conjecture (4.2} on f = Biperm for Noise = 0.1 (open
triangles) and Noise = 0.2 (open squares). Large
crosses indicate theoretical values from (2.12).

(7.1) is baseless for § = 0, as we already mentioned. But for 2 < < 4 the numerical
results show an interpolating behaviour between the theoretical values at § =2 and 4,

with which they nearly coincide.
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8. Summary and discussion

We have proposed a new approximation formula (4.1) for the spacing distribution of
particle positions of Dyson’s two-dimensional Coulomb gas on the unit circle with
inverse temperature f, and have shown its usefulness with the help of Monte Carlo
simulations. For the range 0.2 < f < 2.5 the inverse temperature f,,, found by
least y2 fit of experimental spacing distributions with the conjectured distribution (4.1),
showed satisfactory agreement with the ‘true f’. Slight overestimation for small § and
underestimation for large f can be taken into account to gauge the procedure in the
range 0.1 < B < 4, if larger accuracy in determining f is needed. Comparison with the
Brody distribution shows that distribution (4.1} is superior not only for f > 1, where
the Brody distribution has the wrong asymptotic behaviour for § — oo, but even for
O1l<p <l

We also showed that it is possible to find the inverse temperature § from the
spectral stiffness (measured by the A statistics) of the particle positions of the gas. This
was done with the help of conjecture (7.1), namely: Ag(L) ~ (1/B)1n(L) + constant.
Both these ways of measuring § are successful in the range 0.1 < f < 4, but fail in the
high-temperature limit § — 0.

The partition function (2.2) of the Coulomb gas coincides, for f = 1,2 and 4,
with the normalisation integrals of the eigenphase distributions for the three circular
ensembles of random unitary matrices (COE, CUE and CSE, respectively). The usefulness
of these three ensembles for describing spectral properties of kicked quantum systems
with completely chaotic classical limit is well known (Izrailev 1986, Frahm and Mikeska
1986, Izrailev 1987, Kus et al 1987, Scharf et al 1988, Haake et al 1988). Many examples
of kicked dynamics have been found which fall into one of these three universality
classes, depending on anti-unitary symmetries of the dynamics.

We suggest comparing properties of the Coulomb gas for intermediate § values,
other than 1, 2 or 4, with spectral properties of kicked quantum systems with discrete
spectra and chaotic classical limit, which nevertheless do not fall into one of the
mentioned three universality classes. Fitting experimental spacing distributions with
the conjectured distribution (4.1) and finding B, enables the determination of the ‘true
B’ of the spectrum. This can be used, for example, to scrutinise changes in the spectral
statistics upon changing parameters of the dynamics. If a quantum system shows,
for example, dynamic localisation—Ilike the kicked rotator on the torus for a spin-0
(Izrailev 1986, Feingold and Fishman 1987, Izrailev 1987, Frahm and Mikeska 1988) or
for a spin-% particle (Scharf 1989)—a reduction of § from the maximal possible value
(1, 2, 4) is observed. The dependence of this reduction upon the degree of localisation
can now be measured free of arbitrariness. Proposed scaling behaviour (Izrailev 1988)
of spectral and localisation properties (Casati et al 1990) can be compared.
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Note added in proof. In the meantime Caurier and Grammatikos (1989) found quartic level repulsion (§ = 4)
' also for an autonomous, fermion shell model Hamiltonian, therby completing the picture given at the end of

section 2. Dietz and Haake (1990) calculated the Taylor expansion for the spacing distribution up to order
- S42 for B = 1,4 and order S32 for g = 2!
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