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ABSTRACT 

We present some important results of a robust statistical analysis applied to freeway traffic 
data measured by induction double-loop detectors. We demonstrate that the microscopic 
quantities of traffic flow (e.g. clearance distribution, mental strain coefficient, spectral rigidity 
and so on) markedly depend on an actual position of the traffic sample in the fundamental 
diagram (traffic flux vs. traffic density). Furthermore, we show that clearance distribution and 
spectral rigidity of the celebrated Nagel-Schreckenberg model (NaSch-model) do not 
correspond to realistic traffic behaviour, although such a model reproduces most of 
macroscopic traffic phenomena accurately. Exploiting new knowledge on local 
thermodynamical features of vehicular streams we introduce thermal-like variant of the 
cellular NaSch-model, which is powerful in both microscopic and macroscopic analysis of 
traffic. 
 
Keywords: Traffic Modelling, Microscopic Structure of Traffic, Random Matrix Theory 

STATISTICAL ANALYSIS OF MICROSCOPIC STRUCTURE OF 
TRAFFIC SAMPLE 

Currently, the traffic researches put the stronger accent on microscopic structure of traffic. 
Besides the macroscopic quantities (traffic flux � and traffic density �) the scientific literature 
on traffic introduces the following microscopic description. Considering the data samples ���, ��, … , �	
, ��′�, �′�, … , �′	
 of times when the �th car has entered, resp. left  the induction 
loop detector, and the samples ��, �, … , 	
 of car’s velocities one can calculate the 
distance clearance (for ℓth car) as 
 �ℓ = (��ℓ�� − �ℓ) ℓ. 
It represents a bumper-to-bumper distance, i.e. clear distance between subsequent vehicles 
in the traffic stream. We remark that the calculated clearance comprises the estimation only 
because of possible acceleration/deceleration of vehicles. Evidently, such a quantity has 
statistical nature and it is therefore appropriate to specify it with the help of statistical 
approaches. For this purpose we use the scaled probability density ℘(�) for distance 
clearance (clearance distribution) fulfilling the standard proper normalisation 
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� ℘(�) d� = 1ℝ  

 
and the scaling condition 

��� = � � ℘(�) d� = 1.ℝ  

 
The latter assures the mean clearance among the following vehicles is re-scaled to one. 
Processing a huge amount of data (see Figure 1) we confirm the general knowledge on 
fundamental diagram � = �(�). Such a dependence shows the significant hysteretic features 
reflecting the crowding effects usually observed in realistic transport systems (e.g. congested 
states, stop-and-go states). Whereas the main part (for densities up to 40 vehicles/lane/km) 
of the fundamental diagram corresponds to the free flow states (mean velocity is above 100 
km/hour) the right-hand side of the diagram displays the congested traffic states where the 
freeway is extensively saturated. It leads to a rapid descent in the mean velocity of cars, 
which is predominantly caused by concerns of drivers about the possible collision with the 
other vehicles. Intermediate interval of densities (between 40 and 50 vehicles/lane/km) is the 
region of metastable traffic states, where the vehicular samples convert from free to 
congested area and vice versa.  
 

 
Figure 1 – Colour Representation of Fundamental Diagram. The complete data record (containing single-vehicle 
data measured in 60 days in three-lane freeway) has been divided into samples of one hundred succeeding cars. 
For each sample the flux and density has been calculated. The shades of colours are proportional to the number 

of those samples belonging to the corresponding region of fundamental diagram. 

Clearance Distribution in Traffic Samples  

As published in previous articles [Krbalek and Helbing 2004, Helbing et al. 2006, Krbalek 
2007, Krbalek 2008] a suitable candidate for distance clearance distribution is a one-
parametric class of functions 

℘�(�) = Θ(�) A exp %− &� − '�(, 
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where the only free parameter & is the inverse thermodynamical temperature (see 
[Sopasakis 2004]). Actually, the hypothesis about the psychological interpretation of & is 
being verified. Within the bounds of the upcoming research project the thermal parameter & 
is interpreted as a psychological coefficient describing a level of the mental pressure under 
the driver is while driving his/her car. Hence, in the next part of this article we call & as a 
mental strain coefficient. We remark that the symbol Θ(�) = )1 … � ≥ 0,0 … � < 0,- 
denotes the Heaviside’s function and two normalization constants can be calculated [see 
Krbalek 2007] via two formulas 

' = & + 3 − exp0−1&22 , 
4�� = 25&' K �721'&8. 

Here K9(:) represents the modified Bessel’s function of the second kind (so-called 
MacDonald’s function) of the ;-th order. For clearness, below we plot the clearance 
distribution obtained from traffic data measured on a signal-controlled crossroad during the 
time interval when vehicles were waiting for a green signal.  
 

 
Figure 2 – Clearance Distribution of Cars Waiting at the Red Signal on a Signal-Controlled Crossroad. Bars 

correspond to the crossroad data and the curve displays the predicted probability density ℘�(�) where the mental 
strain coefficient is estimated at the value & ≈ 1.45. We note that the single-vehicle data were analysed 

separately for different lanes of the two-lane road.  

The measured distances are successfully compared to the probability density ℘�(�) cited 

above. In fact, the inter-vehicle gap distribution is rapidly changing with the location of the 
traffic sample in the fundamental diagram. Especially, in the region of the congested states 
the small change in flux or density substantially affects the gap distribution observed, which 
is so typical for classical or quantum chaotic systems. For more comprehensible 
understanding of how the clearance distribution is depending on flux � and density �, we 
execute the robust statistical analysis of highway data (three-lane unidirectional freeway, no 
on-ramps, no off-ramps) with the following results. In the region of free-flow states one can 
observe the exponential probability density (approximately), which is expected for ensembles 
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of statistically independent events or elements. In this case the mental strain coefficient is 
very low and therefore the corresponding distribution converges to the limiting state 

lim�→C ℘�(�) = lim�→C Θ(�) A exp %− &� − '�( = Θ(�) expD−�E. 
With the growing density (as the driver’s psychological pressure increases) the inter-vehicle 
gap distribution shows stronger repulsion near the origin, which is evident when calculating 
the limit 

limF→CG ℘�(�) = limF→CG
℘�(�)�H = 0 (n ∈ ℕ, β > 0). 

Such an effect finally leads to the instability of free flow and consecutively to the transition 
into the new traffic state – the congested flow.  
 

 
Figure 3 – Colour Visualization of Mental Strain Coefficient for Car Drivers. The colour scale (see legend on right-

hand side) displays the value of parameter & depending on both the traffic flux and density. Notice the local 
decrease in the strain coefficient around 40 veh/km/lane. The similar decrease has been detected in other data as 

well.  

As visible in Figure 3 the dependence & = &(N, �) of the strain coefficient on the traffic flux 
and density shows a meaningful (and predictable) behaviour. Whereas in the region of low 
densities one can observe the insignificant level of strain, with the growing density the 
parameter & is increasing. It finally culminates in the region of metastability 
  (�, �) ∈ (30,50) × (1800,2500). 
The strong level of psychological pressure (under which the driver is if moving in this region) 
causes the saturation of free-flow phase, which results in the change of traffic phase. After 
the transition into the congested-flow phase the driver’s strain is temporarily decreasing, 
which is influenced by the sharp drop of mean velocity. Owing to the lower speed of car the 
driver’s ability to operate the vehicle is markedly better than in the region of metastability. 
However, if the traffic density is further increasing the psychological pressure is noticeably 
accretive again. The growth of parameter & to the critical boundary (around &crit ≈ 4) leads to 
the creation of the self-organized blocs of vehicles moving in stop-and-go waves. As 
demonstrated the inverse temperature serves as a convenient indicator for stability/instability 
of actual traffic state. Thus, the hypothesis on psychological interpretation of & appears to be 
legitimate.  
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Spectral Rigidity of Traffic Stream 

Another way how to inspect the microscopic structure of vehicular ensembles is to 
investigate a so-called spectral rigidity of traffic sample. Such a statistical quantity is not 
usual in the physics of traffic, however, the related quantity was already introduced by 
Helbing et al in the article [Helbing 2003]. For the first time the spectral rigidity of traffic 
streams was elaborately studied in article [Krbálek and Šeba 2009].  
 
Contrary to the clearance distribution the spectral rigidity ∆(U) describes the statistical 
properties in the extensive clusters of neighbouring cars. Concretely, let ��ℓ ∶ ℓ = 1, … , W
 be 
the set of scaled clearances measured between each pair of subsequent cars moving in the 
same lane. Dividing the entire sample D0, W) into subintervals 
 XℓY: = D(ℓ −  1)L, ℓL),      ℓ = 1, … , \W/U^   
 
of a length U and denoting by _ℓ(U) the number of vehicles inside the subinterval  XℓY, the average value _̀(U) taken over all possible subintervals is 

_̀(U) = 1
aWU b c _ℓ

a	Y b

ℓd�
(U), 

where the integer part \W/U^ stands for the number of all subintervals XℓY included in the 
interval D0, W). Because of the scaling ��� = 1 it holds _̀(U) = U. 
 

 
Figure 4 – Illustrating the Spectral Rigidity Analysis.  

 The spectral rigidity ∆(U) is a function of the length U and is defined as variance 

∆(U) = 1\W/U^  c(_ℓ(U) − U)�.
a	Y b

ℓd�
 

In fact, this formula represents the statistical variance of the number of vehicles moving at 
the same time inside a fixed part of the road of a length U.  
 
The mathematical properties of the ∆(U) are well understood owing to the fact that they have 
been elaborately studied under terms of Random Matrix Theory. As well known, the 
behaviour of the spectral rigidity reflects the level of systemization in the ensemble. If the 
system is random completely (i.e. without any regulation) the rigidity is equal to identity, i.e. 
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Δ(U) = U. On the contrary, any mutual interactions among the elements of ensemble cause a 
descent in the slope f of a curve ∆(U) ≈ fU + g (f < 1). Finally, if the ensemble is organized 
perfectly (i.e. all neighbouring particles have the same spacings), the relevant rigidity is zero.  
 
 

 
Figure 5 – Spectral Rigidity Test of Traffic Flow. Plus signs, diamonds, stars, circles, crosses and squares 

represent the spectral rigidity of the real-road data. We plot the 60-days averages calculated for data from the 
quoted density regions (see legend). For details see [Krbálek and Šeba 2009]. The curves show the linear 

approximations of the individual data. 

The recent investigations (published in [Krbálek and Šeba 2009]) has revealed that the 
spectral rigidity investigated for induction-double-loop-detector data is a linear function of 
length U in all density regimes, i.e.  ∆(U) = fU + g + ℴ(U��), 
where f = f(N) and g = g(N). Moreover, the detailed statistical analysis of traffic data has 
ascertained that the rigidity depends not only on density but on flux as well. The result of 
relevant statistical investigations is visualized in the Figure 6. 
 

 
Figure 6 – Colour Visualization of Spectral Rigidity. The colour scale (see legend on right-hand side) displays the 

slope f = f(N, �) (depending on traffic density and flux) in the linear behaviour of spectral rigidity Δ(U).  
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MICROSCOPIC ANALYSIS OF CELLULAR TRAFFIC MODEL 

One of the most famous (and frequently used) traffic model is the cellular model originally 
developed by Kai Nagel and Michael Schreckenberg (see [Nagel and Schreckenberg 1992]). 
Although during the last twenty years many alternatives of NaSch-model has been created 
(e.g. [Rickert et al. 1996], [Fukui and Ishibashi 1996], [Nishimura et al. 2006]), in fact all 
essential properties concerning this article are independent of the variant of the model. 
Therefore we are focused on the original arrangement of the model.  
 
Consider _ particles located in the chain of W sites and define the particle density by the 
simple formula N = H	. Let ijk ∈ ℕ be the maximal permissible velocity of model’s particles. 

Due to the condition that each cell of the chain is either occupied or empty, any allowable 
configuration of the model is therefore unequivocally described by the sets of the ordered 
particle locations  �:ℓ ∈ ℕ ∶ ℓ = 1, … , _
 and particle velocities �ℓ  ∈ lijk: ℓ = 1, … , _
. We 
note that symbol lijk represents the set �1,2,3, … , ijk
. Denoting m ∈ D0,1E the 

randomisation parameter, we introduce the basic scheme of the NaSch-model in the 
following steps. 
 

• Step 1 (Startup): The timer is set for zero, i.e. � = 0. The starting configuration (:�(�), :�(�), … , :H(�)) and (�(�), �(�), … , H(�)) is chosen randomly with respect to 
the above-mentioned restrictions. 

• Step 2 (Updating the Configuration): The previous configuration is understood as an 
initial one. The timer is shifted by one, i.e. � ≡ � + 1. 

• Step 2 (Distance Evaluation): The distances �ℓ(�) = :ℓo�(�) − :ℓ(�) among the 
successive particles are calculated. 

• Step 3 (Acceleration): If the car velocity is less than maximal velocity the car 
accelerates according the rule ℓ(� + �p) = ℓ(�) + 1. 

• Step 4 (Randomization): The velocities of all particles are randomly reduced by one, 
i.e. ℓ(� + �p) = ℓ(� + �p) − 1 with probability m (uniformly distributed). 

• Step 5 (Averting the Collision): If ℓ(� + �p) > �ℓ(�) the car velocity is reduced to avoid 

the possible collision, i.e. ℓ(� + 1) = �ℓ(�) − 1, otherwise the velocity remains 

unchanged, i.e. ℓ(� + 1) = ℓ q� + �pr. 
• Step 6 (Parallel Motion): New particles positions are obtained applying the rule :ℓ(� + 1) = :ℓ(�) + ℓ(� + 1). All particles move at the same time (parallel updating).  
• Step 7 (Return): The procedure described is multiplicatively repeated by returning to 

the Step 2. 
Analysis of microscopic structure 

Although it is well known that cellular traffic models – based on the above-mentioned 
principles – predict successfully the effects of crowding (traffic jams etc.) the local structure 
of such models is in deep inconsonance with the traffic reality. Evidently, this discrepancy is 
strongly undesirable because it brings out many problems in model interpretation. The 
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reasons for such a dissent can be predominantly found in the time discretisation and space 
discretization of the models. Anyway, the cellular character of the modelled particle-
ensemble leads to particle interactions which are of a different origin than those detected in 
realistic flows.  
 
In the following part of our text we demonstrate the above-mentioned inconsonance. For 
these intentions we have used the NaSch-model with the following fixed parameters: ijk = 8, m = 0.5 and W = 10000. The density N was varied to obtain a more precise notion 
of changes in microstructure of relevant steady states. We have applied the densities: N ∈ ) �u�CCC , ��C , p�C , uu�CCv. The Figures 7, 8, 9, and 10 show how the corresponding clearance 

distributions of Nagel-Schreckenberg model are changing with density. 
 
 

 
Figure 7 – Scaled Inter-Particle Gap Distribution for NaSch-Model. The histogram was obtained for value N = �u�CCC. 

The clearances of cellular automata have been computed directly from relevant simulations, which is in small 
inconsonance with realistic measurements.  

If the density of model is low (i.e. in the region of free flows) the inter-particle gap distribution 
shows practically exponential behaviour ℘�(�) = Θ(�) expD−�E. It corresponds to the fact that 

interactions among the free-flow-particles are negligible.  
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Figure 8 – Scaled Inter-Particle Gap Distribution for NaSch-Model. The histogram was obtained for value N = ��C. 

 

 
Figure 9 – Scaled Inter-Particle Gap Distribution for NaSch-Model. The histogram was obtained for value N = p�C. 

 

 
Figure 10 – Scaled Inter-Particle Gap Distribution for NaSch-Model. The histogram was obtained for value N = uu�CC. 
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However, with the increasing density the scaled clearance distribution is passing into the 
behaviour that does not correspond to that revealed in freeway data. In the region of highly 
saturated states the particles create long queues (with small gaps among succeeding 
particles), which leads to the discontinuities in the graph ℘ = ℘(�)  (being re-scaled 
according to the condition ��� = 1). These difficultly-interpreted states could be detected also 
when investigating the spectral rigidity. Anyway, if the graph of spectral rigidity  ∆= ∆(U) is situated above the identity ∆(U) = U, the model-setting produces incorrect steady 
states. 
 

 
Figure 11 – Spectral Rigidity of Nagel-Schreckenberg Model. The parameters of the model have been fixed to ijk = 8, m = 0.5 and W = 10000. The model density is varied as indicated in the legend.  

 
It will be shown later that the unwelcome effects detected by the above-mentioned statistical 
analysis can be eliminated if implementing a thermal approach (on local scale).  

THERMAL-LIKE CELLULAR MODEL OF TRAFFIC 

It has been published many times [Krbalek and Helbing 2004], [Sopasakis 2004], [Mahnke et 
al. 2007], [Krbalek and Šeba 2009] that some of driven systems (including the traffic 
systems) show certain features corresponding to those detected in the thermal systems, i.e. 
in systems tending towards the thermal equilibrium. Traffic samples, however, shows such a 
behaviour on local scale only. Thus the thermal approach to the traffic modelling may not be 
applied completely but partially only.  
 
Globally, two alternative methods of traffic modelling used to be applied. Whereas the 
cellular traffic models (as models operating in discrete areas or in discrete time) give a true 
picture of macroscopic effects of vehicular ensembles (traffic congestions and the like), the 
thermodynamical approaches (using the potential energy description) provide the correct 
picture of microscopic structure of traffic streams. Concurrently, a lot of thermodynamical 
models has been represented by the relevant numerical schemes. Some of them have been 
successfully used when simulating the real road traffic. For example, in the article [Krbalek 
2008] the original alternative of Metropolis algorithm has plausibly reproduced the move of a 
vehicle sample in the vicinity of signal-controlled crossroads. Implementing such a new 
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familiarity to the surviving cellular traffic models we introduce a new variant of one-
dimensional lattice gas which is powerful in both microscopic and macroscopic analysis of 
traffic. 

The model parameters and initial state  

Consider _ particles randomly located on the circular lattice of length _ that contains W cells. 
The particle density (and a length of one cell) is therefore equal to N = H	. Let w ∈ ℕ be the 

maximal permissible length (number of cells) of the particle jump. Let the ordered positions �:ℓ ∈  ℕ: ℓ = 1, … , _
 constitute the initial state for our simulation. Owing to the previous 
definitions the mean distance between two successive particles is equal to one, i.e.  

c �ℓ = _,H
ℓd�

 

where �ℓ = (:ℓo� − :ℓ)N represents the real gap between (ℓ + 1)th and ℓth particles. 
 
Since introducing the thermal variant of the cellular traffic model we define the potential 
quasi-energy of the actual configuration as 

x = x(y�, y�, … , yH) = c 1yℓ ,H
ℓd�

                   (1) 

where yℓ = z {Fℓi| is the discretized distance among the particles. We note that the brackets } ~ represent the upper integer part of the real number and the parameter z ∈(_, WE quantifies the intensity of discretization. We remark that the power-law potential in the 
previous formula is chosen with the respect to results published in [Krbalek and Helbing 
2004] and confirmed in [Krbalek 2007, Krbalek and Šeba 2009]. Finally, the inverse 
termodynamical temperature is considered (for purposes of this article) to be proportional to 
the particle density, i.e. &i����~N (see [Sopasakis 2004]).  

The model scheme 

The particle positions are repeatedly updated (we use 20000 steps in our version) according 
to the following rules:  
 
Step 1: The potential energy xC (using formula (1)) for the actual set of locations (:�, :�, … , :H) is calculated.  
Step 2: We pick an index ℓ ∈ �1,2, … , _
 at random. 
Step 3: We draw a random number � equally distributed in the interval (0,1). 
Step 4: The anticipated length of jump is discretized according to the formula w� = }w�~. 
Step 5: We compute an anticipated position :ℓ� = :ℓ + w� of the ℓth element. Because of 
singularity in the potential energy (1) the model particles can not change their order. 
Therefore we accept :ℓ�  only if :ℓ� < :ℓ��. 
Step 6: We calculate a value of potential energy x′ determined for configuration (:�, :�, … , :ℓ��, :ℓ� , :ℓ, … , :H).  
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Step 7: If x� < xC the ℓth particle position take on a new value :ℓ� . If x� ≥ xC then the 
Boltzmann factor � = exp D−&i����(x� − xC)E 
should be compared with a random number � equally distributed in (0,1). Provided that the 
inequality � > � is fulfilled the ℓth particle position takes on the new value :ℓ�  too. Otherwise, 
the original configuration (:�, :�, … , :H) remains unchanged.  
 
The outlined scheme of the updating procedure ensures a relaxation of ensemble into a 
equilibrium-like state when the quasi-energy fluctuates around a constant value being 
independent of initial configuration of particles. After reaching the balance (i.e. after 
approximately 5000 updates of configuration) the ensemble lingers in this steady state until 
the simulation is interrupted. We call this state as thermal quasi-equilibrium.  

Macroscopic behaviour of the model 

In spite of thermal nature of the model presented the macroscopic analysis uncovers the 
effects of aggregation leading to the congested traffic states. This is apparent when 
investigating the particle trajectories (see Figure below).  
 

 
Figure 12 – Time Trajectories of the Thermal-like Cellular Model. In specific regions one can detect the local 

traffic congestions. 

 
The phenomenon of traffic congestion can be detected also if analysing the fundamental 
diagram of the model. The detailed survey of the dependence � = �(N) shows that model 
generates the free flow states (in the region of small densities) as well as the saturated 
states (in the region of large densities). One representative of extensive family of 
fundamental diagrams is visualised in the Figure 13.  
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Figure 13 – Fundamental Diagram of Thermal-like Cellular Model. Data were obtained for _ = 200, &i���� = 40N 

and z = 10. The maximal jump-length has been varied as indicated in the legend.  

Microscopic behaviour of the model 

 

 
Figure 14 – Clearance Distribution Obtained for N = ��CC.  

Due to the thermal background of the simulating scheme there is not surprising that the 
probability density for inter-particle distance shows (in all density regions) the behaviour 
expected. Anyway, considering the parameters _ = 200, N ∈ � ��CC , ��C , ��
 and z = 10, w = p��CC� 

and &i���� = 40N we find out that the relevant clearance distributions obey the predictions 
obtained by the calculations (using the methods developed for Random Matrix theory) 
presented in the articles [Krbalek 2007], [Krbalek and Šeba 2009]. Concretely, the clearance 
distance distribution reads as 
 

℘�(�) = Θ(�) A exp %− &� − '�(, 
where & ≈ &i����.  
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Figure 15 – Clearance Distribution Obtained for N = ��C.  

 

 
Figure 16 – Clearance Distribution Obtained for N = ��.  

Similarly, the spectral rigidity of the model shows a linear behavior according the formula 
 ∆(U) ≈ fU + g, 
where  

f(&) = 2 + 1'&2'(1 + 1'&) ,   g(&) = 61'& + '&(21 + 4'& + 161'&)24(1 + 1'&)� . 
The results of the respective analysis are pictured in the last Figure. 
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Figure 17 – Spectral Rigidity of the Thermal-like Cellular Model. The particle density has been varied as indicated 

in the legend.  

SUMMARY AND CONCLUSION 
 
We have introduced a new variant of one-dimensional lattice gas based on the principles 
known from thermodynamical systems. Connecting two different approaches (cellular and 
thermodynamical) we have created a new simulation scheme that produces the traffic model 
being in a deep accordance with the realistic traffic flow. Except the macroscopic effects (as 
phenomena of vehicle aggregation: congested states, traffic jams et al.) the above-
mentioned thermal-like cellular automaton generates the steady states in such a way that the 
microscopic structure of the relevant ensembles shows the identical probability distributions 
as those revealed in data measured on various freeways.  
 
Although there can be many objections against the thermal traffic models, the test of spectral 
rigidity (known from theory of quantum chaos and Random Matrix Theory) of the originated 
model clearly affirms that the local fluctuations of the thermal-model elements are of the 
same type as those detected among the real vehicles.  
 
The presented idea to interconnect the discrete approach with the thermodynamical one is 
original and it is derived from the numerous attempts to apply the statistical physics 
principles to theory of traffic. On the other hand this article represents only a challenge in this 
field (similarly as published in [Sopasakis 2004]) and requires therefore many calibrations 
and improvements.  
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