
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 5813–5821 doi:10.1088/1751-8113/40/22/004

Equilibrium distributions in a thermodynamical
traffic gas

Milan Krbálek
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Abstract
We derive the exact formula for thermal-equilibrium spacing distribution of a
one-dimensional particle gas with a repulsive potential V (r) = r−α(α > 0)

depending on the distance r between the neighbouring particles. The calculated
distribution (for α = 1) is successfully compared with the highway-traffic
clearance distributions, which provides a detailed view of changes in the
microscopical structure of a traffic sample depending on the traffic density.
In addition to that, the observed correspondence is a strong support of studies
applying the equilibrium statistical physics to traffic modelling.

PACS numbers: 05.70.−a, 05.20.−y, 45.70.Vn

(Some figures in this article are in colour only in the electronic version)

Investigation of one-dimensional particle ensembles seems actually to be very useful for
understanding the complex system called vehicular traffic. Besides the favourite cellular
automata, in the recent time a new trend appears in traffic modelling. Application of the
equilibrium statistical physics to traffic ensembles (queuing systems of spatially interacting
particles) has been many times discussed (see for example [2] and other references therein)
and successfully demonstrated in articles [5, 9] and [7]. It has been manifested in [9] that the
thermodynamics approach can be applied to such a many-particle-driven system as traffic flow,
based on a microscopic description, in analogy with equilibrium physical systems. Besides,
it has been demonstrated in [7] that the relevant statistical distributions obtained from the
local thermodynamical model are in accord with those from traffic data measured on real
freeways by the induction-loop detectors. It opens up an opportunity for finding the analytical
form of probability density for clear distance among the cars (i.e., clearance distribution
in traffic terminology) moving in traffic stream. Up to now the question about analytical
form of clearance distribution has only been a subject of speculations (see the [2, 6])—never
successfully answered.

We aim to use the one-dimensional thermodynamical particle gas to the prediction of a
microscopical structure in traffic flows and consequently make a comparison to the relevant
traffic data distributions. Justification for the approach described can be found in [5] and
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[3] where it is proved that the equilibrium solution of a certain family of the particle gases
(exposed to the heat bath with the temperature T � 0) is a good approximation for steady-state
solution of driven many-particle systems with asymmetrical interactions. Since the vehicular
traffic is a dissipative system of active elements (moving far from equilibrium), it is evident
(see [9] and [5]) that thermodynamics-balance approach can be used on a mesoscopic level
only (i.e., for small-sized samples of N vehicles), where the traffic density fluctuates around
the constant value and distances and velocities are mutually uncorrelated. Then the stationary
solution of the relevant Fokker–Planck equation practically coincides with the thermal-balance
probability density of a certain statistical gas (see [5]). Moreover, the possibility for using
the thermodynamical approach is supported by the fact that distribution of velocities in traffic
sample fully corresponds to the Gaussian distribution (in each traffic-density interval)—see
[2, 4], and [7]. Overall, it is sufficiently justified that traffic systems can be locally (i.e., on a
mesoscopic level) described by instruments of equilibrium statistical physics.

Thus, consider N identical particles (vehicles) on the circumference L = N of a circle.
Let xi (i = 1, . . . , N) denote the circular position of the ith particle. Put xN+1 = x1 + 2π , for
convenience. Now we introduce the short-ranged potential energy

U ∝
N∑

i=1

V (ri),

where V (ri) corresponds to the repulsive two-body potential depending on the distance
ri = |xi+1 − xi | N

2π
between the neighbouring particles only. Nearest-neighbour interaction

is chosen with respect to the realistic behaviour of the car driver in traffic sample (see [7]).
Besides, the potential V (r) has to be defined so that limr→0+ V (r) = ∞ which prevents
particles passing through each other. The Hamiltonian of the described ensemble reads as

H = 1

2

N∑
i=1

(vi − v)2 + C

N∑
i=1

V (ri),

with vi being the ith particle velocity and C the positive constant. Note that v represents the
mean velocity in the ensemble. Then, the appropriate partition function1

Z =
∫

R
2N

δ

(
L −

N∑
i=1

ri

)
N∏

i=1

exp

(
− (vi − v)2

2σ 2

)
exp

(
−C

V (ri)

σ 2

)
dri dvi (1)

leads us (after 2N − 1 integrations) to the simple assertion that the velocity v of particles is
Gaussian distributed, i.e.

P(v) = 1√
2πσ

exp

(
− (v − v)2

2σ 2

)
is the corresponding probability density.

Of larger interest, however, is the spacing distribution Pβ(r). To calculate the exact form
of Pβ(r) one can restrict the partition function (1) by N velocity integrations to the reduced
form

ZN(L) =
∫

R
N

δ

(
L −

N∑
i=1

ri

)
exp

(
−β

N∑
i=1

V (ri)

)
dr1 . . . drN ,

where β = Cσ−2 is the inverse temperature (dimensionless) of the heat bath. Denoting
f (r) = e−βV (r) the previous expression changes to

ZN(L) =
∫

R
N

δ

(
L −

N∑
i=1

ri

)
N∏

i=1

f (ri) dr1 . . . drN .

1 σ is the constant representing a statistical variance.
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Applying the Laplace transformation (see the [1] for details) one can obtain

gN(p)≡
∫ ∞

0
ZN(L) e−pL dL =

(∫ ∞

0
f (r) e−pr dr

)N

≡ [g(p)]N.

Then the partition function (in the large N limit) can be computed with the help of the Laplace
inversion

ZN(L) = 1

2πi

∫ B+i∞

B−i∞
gN(p) eLp dp.

Its value is well estimated by the approximation in the saddle point B which is determined
using the equation

1

g(B)

∂g

∂p
(B) = − L

N
.

Thus,

ZN(L) ≈ [g(B)]N eLB. (2)

Hence the probability density for spacing r1 between the particles 1 and 2 can be then reduced
to the form

P(r1) = ZN−1(L − r1)

ZN(L)
f (r1).

Supposing N � 1 and using equation (2) we obtain

P(r1) = 1

g(B)
f (r1) e−Br1 ,

which leads (after applying the same procedure for every pair of successive particles) to the
distribution function for spacing r between arbitrary couple of neighbouring particles

Pβ(r) = A e−βV (r) e−Br (r � 0). (3)

Note that constant A assures the normalization
∫ ∞

0 Pβ(r) dr = 1. Furthermore, returning to
the original choice L = N, the mean spacing is

〈r〉 ≡
∫ ∞

0
rPβ(r) dr = 1. (4)

The above two conditions can be understood as an equation system for unknown normalization
constants A,B.

Let us proceed to the special variants of the gas studied. First, we draw our attention to
the Coulomb gas with the logarithmic potential

V (r) := − ln(r) (r > 0).

Such a gas (usually called Dyson’s gas, for example in [11]) is frequently used in many
branches of physics (including the traffic research in [8]) and the corresponding spacing
distribution reads as (see [1])

Pβ(r) = (β + 1)β+1

�(β + 1)
rβ e−(β+1)r ,

where �(ξ) is the gamma function. Of larger physical interest, as demonstrated in [5] and [7],
seem actually to be the potentials

Vα(r) := r−α (r > 0),

for α > 0. The aim of the following computational procedure is to normalize the distribution

Pβ(r) = A e− β

rα e−Br . (5)
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Figure 1. Normalization constant B depending on the inverse temperature β. Squares represent
the exact value of B obtained from numerical computations. The dashed and solid curves display
the large β approximation (10) and full approximation (8), respectively. The behaviour close to
the origin is magnified in the inset.

Consider now the favourable choice α = 1, for which the normalization integrals are exactly
expressed as ∫ ∞

0
e− β

r e−Br dr = 2

√
β

B
K1(2

√
βB) (6)

∫ ∞

0
r e− β

r e−Br dr = 2
β

B
K2(2

√
βB), (7)

where Kλ is the Mac-Donald’s function (the modified Bessel’s function of the second kind) of
order λ, having for λ = 1 and λ = 2 an approximate expression

Kλ(y) =
√

π

2
e−y

(
y−1/2 +

3

8
5λ−1y−3/2 + O(y−5/2)

)
.

Applying equations (6) and (7) to the normalization integrals one can determine the exact
values of the constants A and B. Both of them can be, after applying Taylor’s expansion
procedure, very well estimated by the approximations

B ≈ β +
3 − e−√

β

2
, (8)

and

A ≈
√

2β + 3 − e−√
β

√
8βK1

(√
4β2 + 6β − 2β e−√

β
) . (9)

Finally, we investigate the distribution (5) for general α > 0. Although in this case
the normalization integrals are not trivially solvable, the scaling (4) leads us to the simple
approximate formula

B ≈ αβ + 1 +
α

2
(β � 1). (10)
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Figure 2. Relative deviation in the approximate value of the normalization constant B as a function
of parameter β. We display the deviation (13) between the numerical value Bex and the value Best
obtained from the large β approximation (10). The plus signs, squares, triangles, circles and stars
correspond to the parameters α = 1, 2, 3, 4, 5, respectively. The tails of the curves are magnified
in the inset.

The large β estimation r−α ≈ 1 − α + αr−1, which holds true for values r around the mean
distance r ≈ 1, provides the asymptotical formula for the normalization constant A:

A ≈ 1

2

√
1 +

1

2β
+

1

αβ

eβ(1−α)

K1(
√

2αβ(2αβ + α + 2))
. (11)

For practical applications it seems to be useful to detect the critical inverse temperature
βcrit under which the relative deviation between the exact (ex) and estimated (est) values of
the constant A (or B)

δlog(A) := | log(Aex) − log(Aest)|
log(Aex)

(12)

δB := |Bex − Best|
Bex

(13)

are larger than the fixed acceptable deviation δ. For these purposes we plot the functional
dependence δB = δB(β) and δlog(A) = δlog(A)(β) in figures 2 and 3, respectively. We note that
the exact values Aex, Bex were determined with the help of numerical computations.

Considering now the tested choice for the car–car potential V (r) = r−1 we intend to
compare the equilibrium distribution

Pβ(r) = A e− β

r e−Br (14)

with the relevant distributions of single-vehicle data measured continuously during
approximately 140 days on the Dutch two-lane freeway A9. The macroscopic traffic density

 was calculated for samples of N = 50 subsequent cars passing a detector. For the purposes
described above we divide the region of the measured densities 
 ∈ [0, 85 veh/km/lane] into
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Figure 3. Relative deviation in the approximate value of the normalization constant A as a function
of parameter β. Plotted is the deviation (12) between the numerically computed value Aex and the
estimated value (11). The symbols used here are consistent with the symbols in figure 2.

85 equidistant subintervals and separately analyse the data from each other. The sketched
procedure prevents the undesired mixing of the states with a different inverse temperature β,

i.e. with a different density. The bumper-to-bumper distance ri among the succeeding cars (ith
and (i − 1)th) is calculated (after eliminating car-truck, truck-car, and truck-truck gaps) using
the standard formula

ri = vi(ti − ti−1),

by means of netto time-headway ti − ti−1 and velocity vi of the ith car (both directly measured
with induction-loop detector) supposing that the velocity vi remains constant between the
times ti , ti−1 when the ith car and the previous one are passing a measure point. Such a
condition could be questionable, especially in the region of small densities where the temporal
gaps are too large. However, the influence of a possible error is of marginal importance,
as apparent from the fact that the distribution function plotted for small-density data does
not show any visible deviation from Poisson behaviour expected for independent events (see
figure 4 and relation (15)).

We note that mean distance among the cars is rescaled to 1 in all density regions. The
thorough statistical analysis of the traffic data leads afterwards to the excellent agreement
between clearance distribution computed from traffic data and formula (14) for the fitted value
of inverse temperature βfit (see figure 4). We have obtained the fit parameter βfit by a least-
square method, i.e. minimizing the error function χ2. The deviation χ2 between the theoretical
and empirical clearance distributions is plotted in figure 5 (low part).

Dimensionless inverse temperature β of the traffic sample, representing a quantitative
description of mental strain under which the car-drivers are in a given situation, shows a
non-trivial dependence on the traffic density 
 (as visible in figure 5(top part)). For free flow
states (
 � 20 veh/km/lane) one can recognize a rise in temperature having a linear behaviour
(up to 10 veh/km/lane) and visible plateau above. In the intermediate region (between 20
and 50 veh/km/lane), where free traffic converts to the congested traffic, we detect a sharp
increase in the first half. Such a behaviour can be simply elucidated by the fact that the drivers,
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Figure 4. Probability density P(r) for scaled spacing r between successive cars in traffic flow.
Histograms represent the clearance distributions computed for traffic data from the indicated
density region (in veh/km/lane). Note that the mean distance among the cars is rescaled to 1 in all
density regions. The curves represent the predictions of statistical model (14) for the fitted value
of inverse temperature βfit. The respective values βfit were carefully analysed and consecutively
visualized in figure 5 (top part).
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Figure 5. Inverse temperature βfit and deviation χ2 as a function of traffic density 
. Squares
stand for values of the fit parameter βfit, for which the function (14) coincides with clearance
distribution of traffic data. The curve represents a polynomial fit of relevant data. Bars from the
lower part correspond to the sums of squared deviations between the empirical and the theoretical
netto distance distributions for βfit. We note that the value of the normalization constant B was
determined via formula (8), because the values of the relevant inverse temperatures lie in the
interval [0, 2], where the linear approximation (10) is less suitable (see deviations in figure 2). The
second normalization constant A was calculated by means of equation (9).
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Figure 6. Deviation χ2 between clearance distribution of cars moving in traffic stream and
normalized distribution (5) evaluated for α = 2, 3, 4, 5, respectively. Grey bars represent the sums
of squared deviations depending on the traffic density for α = 2, 3, 4, 5, respectively. Dark bars
display the relevant deviations for α = 1 previously plotted in figure 5 (lower part).

moving quite fast in a relatively dense traffic flow, are under a substantial psychological
pressure, which finally results (for densities 
 ∈ [35, 50] veh/km/lane) in the transition to
the congested flows and therefore a drop in the inverse temperature. In a synchronized traffic
regime (
 � 50 veh/km/lane) the driver’s vigilance rapidly grows up which culminates the
traffic-jam formation.

For completeness we have compared real-road clearance distributions with the probability
density (5) specified for power-law potentials V (r) = r−α, where α = 2, 3, 4, 5, respectively.
A similar analysis was already introduced in [7]. From the careful analysis of statistical
deviations χ2, comparisions between freeway data and the distribution (5), for α = 2, 3, 4, 5,

are substantially worse than those calculated for α = 1 (follow figure 6). We emphasize that
small deviations χ2 (indicating a good agreement) detected near the origin in figure 6 are
caused by the fact that for low traffic-densities the interactions among the cars are vanishing
and the inter-vehicle gaps are therefore practically independent. The relevant distributions in
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this case came close to the Poisson distribution (see the upper left-hand subplot of figure 4).
However, the Poisson distribution can be obtained as a limit of distribution (3), i.e.

lim
β→0+

Pβ(r) = e−r , (15)

for the arbitrary function V (r). For that reason it is impossible to detect the interaction potential
in the traffic sample using the low density data only. The comparison of various potentials
V (r) = r−α (including the logarithmical potential V (r) = − ln(r)) brings finally the message
that interaction among the vehicles in traffic stream can be very well estimated by the short-
ranged two-body power-law potential V (r) = r−1. Predicted inter-vehicle-gap distributions
correspond in this case to the computed probability density in all density intervals.

We append that another suitable quantity for comparison with single-vehicle data is
a time-clearance distribution as well. Furthermore, time gaps among the succeeding
cars are directly measurable and therefore not burden with errors caused by computation
approximations. The determination of the exact form for time-headway probability density
of the above thermodynamical traffic gas and relevant comparison with highway traffic data
will be incorporated in the continuing work. Nevertheless, several analytical forms for the
corresponding distribution have already been discussed in [5] and also in book [10].

To conclude we have found the analytical form of the thermal-equilibrium spacing
distribution for a one-dimensional traffic gas which neighbouring particles are repulsed by
the two-body potential V = r−α, where r is their mutual distance. The values of two
normalization constants were successfully estimated by the convenient approximations. The
calculated distribution (for α = 1) with one free parameter (inverse temperature β) has been
compared to the distance clearance distribution of the freeway traffic samples with an excellent
outcome. It was demonstrated that the inverse temperature of the traffic sample non-trivially
depends on the traffic density. The obtained agreement between experimental and calculated
distributions confirms a convenience of the traffic potential used for description of local traffic
interactions. This paper crowns the quest for the mathematical formula for probability density
of mutual clearances among the cars in a traffic stream and supports the possibility for applying
the equilibrium statistical physics to traffic modelling.
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